Skip to content

API Server

Kreuzberg includes a built-in REST API server powered by Litestar for document extraction over HTTP.

Installation

Install Kreuzberg with the API extra:

pip install "kreuzberg[api]"

Running the API Server

Using Python

1
2
3
4
from kreuzberg._api.main import app
import uvicorn

uvicorn.run(app, host="0.0.0.0", port=8000)

Using Litestar CLI

litestar --app kreuzberg._api.main:app run

With Custom Settings

litestar --app kreuzberg._api.main:app run --host 0.0.0.0 --port 8080

API Endpoints

Health Check

GET /health

Returns the server status:

1
2
3
{
  "status": "ok"
}

Extract Files

POST /extract

Extract text from one or more files.

Request:

  • Method: POST
  • Content-Type: multipart/form-data
  • Body: One or more files with field name data
  • Maximum file size: Configurable via KREUZBERG_MAX_UPLOAD_SIZE environment variable (default: 1GB per file)

Response:

  • Status: 201 Created
  • Body: Array of extraction results

Example:

1
2
3
4
5
6
7
8
9
# Single file
curl -X POST http://localhost:8000/extract \
  -F "data=@document.pdf"

# Multiple files
curl -X POST http://localhost:8000/extract \
  -F "data=@document1.pdf" \
  -F "data=@document2.docx" \
  -F "data=@image.jpg"

Response Format:

[
  {
    "content": "Extracted text content...",
    "mime_type": "text/plain",
    "metadata": {
      "pages": 5,
      "title": "Document Title"
    },
    "chunks": [],
    "entities": null,
    "keywords": null,
    "detected_languages": null
  }
]

Runtime Configuration

The /extract endpoint supports runtime configuration via query parameters and HTTP headers, allowing you to customize extraction behavior without requiring static configuration files.

Query Parameters

Configure extraction options directly via URL query parameters:

Enable chunking with custom settings:

curl -X POST "http://localhost:8000/extract?chunk_content=true&max_chars=500&max_overlap=50" \
  -F "data=@document.pdf"

Extract entities and keywords:

curl -X POST "http://localhost:8000/extract?extract_entities=true&extract_keywords=true&keyword_count=5" \
  -F "data=@document.pdf"

Force OCR with specific backend:

curl -X POST "http://localhost:8000/extract?force_ocr=true&ocr_backend=tesseract" \
  -F "data=@image.jpg"

Image Extraction and OCR

Kreuzberg can extract embedded images from various document formats and optionally run OCR on them to extract text content:

# Basic image extraction from PDF documents
curl -X POST "http://localhost:8000/extract?extract_images=true" \
  -F "data=@document.pdf"

# Extract images and run OCR on them using Tesseract
curl -X POST "http://localhost:8000/extract?extract_images=true&ocr_extracted_images=true&image_ocr_backend=tesseract" \
  -F "data=@scanned_document.pdf"

# Extract images from PowerPoint presentations with dimension filtering
curl -X POST "http://localhost:8000/extract?extract_images=true&ocr_extracted_images=true&image_ocr_min_width=100&image_ocr_min_height=100&image_ocr_max_width=3000&image_ocr_max_height=3000" \
  -F "data=@presentation.pptx"

# Use EasyOCR for better scene text recognition
curl -X POST "http://localhost:8000/extract?extract_images=true&ocr_extracted_images=true&image_ocr_backend=easyocr" \
  -F "data=@document_with_photos.pdf"

# Extract images from HTML with inline base64 images
curl -X POST "http://localhost:8000/extract?extract_images=true" \
  -F "data=@webpage.html"

# Process multiple documents with different image extraction settings
curl -X POST "http://localhost:8000/extract?extract_images=true&ocr_extracted_images=true&image_ocr_backend=tesseract" \
  -F "data=@document1.pdf" \
  -F "data=@presentation.pptx" \
  -F "data=@email.eml"

Image Extraction Response Format:

When image extraction is enabled, the response includes additional fields:

[
  {
    "content": "Main document text content...",
    "mime_type": "text/plain",
    "metadata": { ... },
    "images": [
      {
        "data": "...",
        "format": "png",
        "filename": "chart_1.png",
        "page_number": 2,
        "dimensions": [640, 480],
        "colorspace": "RGB",
        "bits_per_component": 8,
        "is_mask": false,
        "description": "Chart showing quarterly results"
      }
    ],
    "image_ocr_results": [
      {
        "image": {
          "data": "...",
          "format": "jpeg",
          "filename": "screenshot.jpg",
          "dimensions": [1024, 768]
        },
        "ocr_result": {
          "content": "Text extracted from image using OCR...",
          "mime_type": "text/plain",
          "metadata": { "quality_score": 0.95 }
        },
        "confidence_score": 0.87,
        "processing_time": 1.23,
        "skipped_reason": null
      }
    ]
  }
]

Advanced Image OCR Configuration:

For complex image OCR scenarios, use header-based configuration:

# Tesseract with multilingual support and custom PSM
curl -X POST http://localhost:8000/extract \
  -H "X-Extraction-Config: {
    \"extract_images\": true,
    \"ocr_extracted_images\": true,
    \"image_ocr_backend\": \"tesseract\",
    \"image_ocr_config\": {
      \"language\": \"eng+deu+fra\",
      \"psm\": 6,
      \"output_format\": \"text\"
    },
    \"deduplicate_images\": true,
    \"image_ocr_min_dimensions\": [200, 200],
    \"image_ocr_max_dimensions\": [4000, 4000]
  }" \
  -F "data=@multilingual_presentation.pptx"

# EasyOCR with confidence threshold and GPU acceleration
curl -X POST http://localhost:8000/extract \
  -H "X-Extraction-Config: {
    \"extract_images\": true,
    \"ocr_extracted_images\": true,
    \"image_ocr_backend\": \"easyocr\",
    \"image_ocr_config\": {
      \"language_list\": [\"en\", \"de\"],
      \"gpu\": false,
      \"confidence_threshold\": 0.6
    }
  }" \
  -F "data=@document_with_scene_text.pdf"

Supported Document Types for Image Extraction:

  • PDF documents: Embedded images, graphics, and charts
  • PowerPoint presentations (PPTX): Slide images, shapes, and media
  • HTML documents: Inline images and base64-encoded images
  • Microsoft Word documents (DOCX): Embedded images and charts
  • Email files (EML, MSG): Image attachments and inline images

Enable language detection:

curl -X POST "http://localhost:8000/extract?auto_detect_language=true" \
  -F "data=@multilingual_document.pdf"

Supported Query Parameters:

  • chunk_content (boolean): Enable content chunking
  • max_chars (integer): Maximum characters per chunk
  • max_overlap (integer): Overlap between chunks in characters
  • extract_tables (boolean): Enable table extraction
  • extract_entities (boolean): Enable named entity extraction
  • extract_keywords (boolean): Enable keyword extraction
  • keyword_count (integer): Number of keywords to extract
  • force_ocr (boolean): Force OCR processing
  • ocr_backend (string): OCR engine (tesseract, easyocr, paddleocr)
  • auto_detect_language (boolean): Enable automatic language detection
  • pdf_password (string): Password for encrypted PDFs
  • extract_images (boolean): Extract embedded images from supported formats (PDF, PPTX, HTML, Office, Email)
  • ocr_extracted_images (boolean): Run OCR on extracted images to get text content
  • image_ocr_backend (string): OCR engine to use for images (tesseract, easyocr, paddleocr)
  • image_ocr_min_width / image_ocr_min_height (integer): Minimum image dimensions for OCR eligibility
  • image_ocr_max_width / image_ocr_max_height (integer): Maximum image dimensions for OCR processing
  • deduplicate_images (boolean): Remove duplicate images by content hash (enabled by default)

Boolean Parameter Formats:

Query parameters accept flexible boolean values:

  • true, false
  • 1, 0
  • yes, no
  • on, off

Header Configuration

For complex nested configurations, use the X-Extraction-Config header with JSON format:

Basic header configuration:

1
2
3
curl -X POST http://localhost:8000/extract \
  -H "X-Extraction-Config: {\"chunk_content\": true, \"max_chars\": 300, \"extract_keywords\": true}" \
  -F "data=@document.pdf"

Advanced OCR configuration:

curl -X POST http://localhost:8000/extract \
  -H "X-Extraction-Config: {
    \"force_ocr\": true,
    \"ocr_backend\": \"tesseract\",
    \"ocr_config\": {
      \"language\": \"eng+deu\",
      \"psm\": 6,
      \"output_format\": \"text\"
    }
  }" \
  -F "data=@multilingual_document.pdf"

GMFT Deprecation

GMFT-based table extraction is deprecated and scheduled for removal in Kreuzberg v4.0. The example below exists for legacy users; plan to migrate to the TATR-based table extraction pipeline before upgrading.

Table extraction with GMFT configuration:

curl -X POST http://localhost:8000/extract \
  -H "X-Extraction-Config: {
    \"extract_tables\": true,
    \"gmft_config\": {
      \"detector_base_threshold\": 0.85,
      \"remove_null_rows\": true,
      \"enable_multi_header\": true
    }
  }" \
  -F "data=@document_with_tables.pdf"

Configuration Precedence

When multiple configuration sources are present, they are merged with the following precedence:

  1. Header config (highest priority) - X-Extraction-Config header
  2. Query params - URL query parameters
  3. Static config - kreuzberg.toml or pyproject.toml files
  4. Defaults (lowest priority) - Built-in default values

Header overrides query parameters:

1
2
3
curl -X POST "http://localhost:8000/extract?max_chars=1000" \
  -H "X-Extraction-Config: {\"max_chars\": 500}" \
  -F "data=@document.pdf"

Result: max_chars will be 500 (from header)

Interactive API Documentation

Kreuzberg automatically generates comprehensive OpenAPI documentation that you can access through your web browser when the API server is running.

Accessing the Documentation

Once the API server is running, you can access interactive documentation at:

  • OpenAPI Schema: http://localhost:8000/schema/openapi.json
  • Swagger UI: http://localhost:8000/schema/swagger
  • ReDoc Documentation: http://localhost:8000/schema/redoc
  • Stoplight Elements: http://localhost:8000/schema/elements
  • RapiDoc: http://localhost:8000/schema/rapidoc

Features

The interactive documentation provides:

  • Complete API Reference: All endpoints with detailed parameter descriptions
  • Try It Out: Test API endpoints directly from the browser
  • Request/Response Examples: Sample requests and responses for each endpoint
  • Schema Validation: Interactive validation of request parameters
  • Download Options: Export the OpenAPI specification

Example Usage

1
2
3
4
5
# Start the API server
litestar --app kreuzberg._api.main:app run

# Open your browser to view the documentation
open http://localhost:8000/schema/swagger

The documentation includes examples for all configuration options, making it easy to understand the full capabilities of the extraction API.

Error Handling

Invalid configuration returns appropriate error responses:

# Invalid JSON in header
curl -X POST http://localhost:8000/extract \
  -H "X-Extraction-Config: {invalid-json}" \
  -F "data=@document.pdf"

# Response: 400 Bad Request
{
  "message": "Invalid JSON in X-Extraction-Config header: ...",
  "details": "{\"error\": \"...\"}"
}

Error Handling

The API uses standard HTTP status codes:

  • 200 OK: Successful health check
  • 201 Created: Successful extraction
  • 400 Bad Request: Validation error (e.g., invalid file format)
  • 422 Unprocessable Entity: Parsing error (e.g., corrupted file)
  • 500 Internal Server Error: Unexpected error

Error responses include:

1
2
3
4
{
  "message": "Error description",
  "details": "{\"additional\": \"context\"}"
}

Debugging 500 Errors

For detailed error information when 500 Internal Server Errors occur, set the DEBUG environment variable:

1
2
3
4
5
# Enable debug mode for detailed 500 error responses
DEBUG=1 litestar --app kreuzberg._api.main:app run

# Or with uvicorn
DEBUG=1 uvicorn kreuzberg._api.main:app --host 0.0.0.0 --port 8000

When DEBUG=1 is set, 500 errors will include:

  • Full stack traces
  • Detailed error context
  • Internal state information
  • Request debugging details

⚠️ Warning: Only enable debug mode in development environments. Debug information may expose sensitive details and should never be used in production.

Features

  • Runtime Configuration: Configure extraction via query parameters and HTTP headers
  • Batch Processing: Extract from multiple files in a single request
  • Automatic Format Detection: Detects file types from MIME types
  • OCR Support: Automatically applies OCR to images and scanned PDFs
  • Configuration Precedence: Flexible configuration merging with clear precedence
  • Structured Logging: Uses structlog for detailed logging
  • OpenTelemetry: Built-in observability support
  • Async Processing: High-performance async request handling

Configuration

The API server uses the default Kreuzberg extraction configuration:

  • Tesseract OCR is included by default
  • PDF, image, and document extraction is supported
  • Table extraction with GMFT (if installed)

Environment Variables

The API server can be configured using environment variables for production deployments:

Server Configuration

Variable Description Default Example
KREUZBERG_MAX_UPLOAD_SIZE Maximum upload size in bytes 1073741824 (1GB) 2147483648 (2GB)
KREUZBERG_ENABLE_OPENTELEMETRY Enable OpenTelemetry tracing true false

Usage Examples

# Set 2GB upload limit
export KREUZBERG_MAX_UPLOAD_SIZE=2147483648
litestar --app kreuzberg._api.main:app run

# Disable telemetry
export KREUZBERG_ENABLE_OPENTELEMETRY=false
uvicorn kreuzberg._api.main:app --host 0.0.0.0 --port 8000

# Production settings with Docker
docker run -p 8000:8000 \
  -e KREUZBERG_MAX_UPLOAD_SIZE=5368709120 \
  -e KREUZBERG_ENABLE_OPENTELEMETRY=true \
  goldziher/kreuzberg:latest

Note: Boolean environment variables accept true/false, 1/0, yes/no, or on/off values.

To use custom configuration, modify the extraction call in your own API wrapper:

1
2
3
4
5
6
7
8
9
from kreuzberg import ExtractionConfig, batch_extract_bytes
from litestar import Litestar, post

@post("/extract-custom")
async def custom_extract(data: list[UploadFile]) -> list[ExtractionResult]:
    config = ExtractionConfig(force_ocr=True, ocr_backend="easyocr", extract_tables=True)
    return await batch_extract_bytes([(await file.read(), file.content_type) for file in data], config=config)

app = Litestar(route_handlers=[custom_extract])

Production Deployment

For production use, consider:

  1. Reverse Proxy: Use nginx or similar for SSL termination
  2. Process Manager: Use systemd, supervisor, or similar
  3. Workers: Run multiple workers with uvicorn or gunicorn
  4. Monitoring: Enable OpenTelemetry exporters
  5. Rate Limiting: Add rate limiting middleware
  6. Authentication: Add authentication middleware if needed
  7. Security: Ensure DEBUG environment variable is not set

Example production command:

1
2
3
4
5
uvicorn kreuzberg._api.main:app \
  --host 0.0.0.0 \
  --port 8000 \
  --workers 4 \
  --log-level info